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ABSTRACT

It is often assumed that stars are formed when a
large initial cloud splits up into smaller fragments, each
of which may in turn split into smaller pieces, and so on.
This continues until the final stage before the cloud con-
denses into a visible star, at which stage the cloud fragment
may be called a protostar. We present a simple mathematical
model for the expected number density (i.e., "mass spectrum")
of cloud fragments which does not require detailed knowledge
of the physics of the fragmentation process, but uses merely
some simple and plausible phenomenological hypotheses.

The present state of empirical evidence about the
initial mass spectrum of protostars and interstellar clouds
is first reviewed. We then describe and expand upon a mathe-
matical model proposed by Filippov (1960) for the mass spec-
trum of objects formed by the repeated random independent
splitting of an initial object. Assuming that both the rate
of splitting and the "one-shot" splitting distribution are
power functions of fragment mass, it is possible to reproduce
either the "fractional exponential' or inverse-power laws
which have been proposed as descriptions of the observed mass
spectrum of protostars and interstellar clouds.

In the inverse-power law description, the Filippov
model cannot produce an index larger than 1.0, whereas the
index estimated from field stars larger than one solar mass
is on the order of 1.33. This difference can be explained by
assuming that present field stars were formed in different ini-
tial clouds, thus, the observed mass spectrum is a mixture of
Filippov-type spectra.

The index 2/3 observed in the inverse-power law mass
spectrum of small stars (less than one solar mass) can be ex-
plained by a one-shot splitting law in which gravitational po-
tential energy of fragments of a cloud is distributed uniformly
over equal ranges of fragment mass. This seems to be more
realistic than the other one-shot splitting laws proposed by
various authors.
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RANDOM INDEPENDENT SPLITTING MODEL FOR THE
MASS SPECTRUM OF PROTOSTARS AND INTERSTELLAR CLOUDS

1.0 INITIAL PROTOSTELLAR MASS SPECTRUM

Can we learn something about the processes govern-
ing the formation of stars and interstellar clouds from the
-3 present stellar luminosity function? The present distribution
‘§ of stellar absolute magnitudes can be related to theoretical
. models of star formation by means of the initial protostellar
- mass spectrum, q(m,t). Denote the present epoch by T, and the
‘% expected (normalized) number of stars whose absolute visual
j magnitudes are between M and Mv - aM_ by W(MV,T)dMV; the func-

tion w(MV,T) is known as the present luminosity function.

e

Suppose that luminosity MV is a one-to-one functilion

of the stellar mass m, Mv(m)(see, e.g., Limber (1960)). Then
the expected number of stars of mass m to m + dm at the present
time T is q(m,T)dm, where

i

q(m,T) = y(M (m),T)|aM (m)/dm| (1)

! is the present mass spectrum, i.e., expected number density.
We are interested in the stellar mass spectrum at

the time t when the large cloud from which stars had allegedly
formed was split into many small fragments or protostars which
had not yet commenced thermonuclear element-burning. Unfor-
tunately the initial protostar spectrum g(m,t) is probably not
equal to the present stellar mass spectrum g(m,T). First of
all, it is possible that not all of the mass of the protostar
contracted into a presently observable star (Kiang, 1966a) and
that the fraction of mass lost varied greatly with the initial
protostellar mass. A physical process exhibiting this effect
would be the loss of gas by radiation pressure when the central
condensation of the protostar grew hot before the outlying re-
gions did. In the rest of this paper we will ignore this effect.
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Secondly, we no longer observe old massive stars.
The old massive stars have already evolved off the main sequence
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into relatively invisible white dwarfs. This is often taken
into account by means of an "evolution correction" of ¢(m,T,t)
which 1s the fraction of stars of mass m which are still visi-
ble at time T, i.e., the proportion of stars of mass m whose
main sequence ages are less than the ages T -~ t of the star
system. Therefore

q(m,t) = qa(m,T)/¢(m,T,t) (2)

This correction was first introduced explicitly by Salpeter

(1955).

Salpeter's assumption is that stars are "born" (we
interpret this as "reaching the main sequence™) uniformly in
time, and thereafter evolve at a rate which i1s independent of
the time of birth. Thus

¢(m,T,t)

rms(m)/(T—t) if T - ¢t > rms(m) (3)

1 if T -t < t__(m)

¢(m,T,t) s

where Tms(m) is the lifetime on the main sequence of a star
whose mass is m. Even if this were correct the function Tms(m)
is not well known. Schmidt (1959) uses

Tms(m) = k(m) m/L (L)

where k(m) is a slowly varying function of m, and m/L is the
mass-to-light ratio. It can be said in general that Tms(m)

[therefore ¢(m,T,t)] rapidly decreases with increasing m, ex-

ceeding the presumed age of the galaxy (perhaps some 8 x 109
years) only for m < 0.75 mg , roughly. (m@ is the mass of the
sun. )

The basic difficulty in applying formula (3) 1s that
we cannot say what the distribution of birthdays is without
making some very strong and, in general, unverifiable assump-
fions about the physical processes of star and protostar forma-
tion. Some attempts to compute the rate of star formation have
been made by Mathis (1959), Salpeter (1959) and Schmidt (1959);
the rate of protostar and stellar cloud formation has been es-
timated by Field and Saslaw (1965).
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The above-named astronomers readily point out the speculative
nature of their conclusions.

In summary, while some sort of evolution correction
is needed in order to estimate the initial protostellar mass
spectrum for relatively large stars, the precise nature of the
correction is unknown. We must therefore restrict our atten-
tion to the mass spectrum of relatively small stars (m < 0.75

m@).

Unfortunately, the present spectrum of small stars
is not well determined empirically, a major reason being se-
lection effects for low-visibility stars. Nevertheless, there

appear to be no visible stars with m < 0.035 my and only three

with m < 0.075 mg, (O'Leary, 1966). For 0.15 my < m < 0.75 my

the mass spectrum of field stars is empirically of the form of
an inverse power law with index a,

q(m,T) = constant ot (5)

There is considerable disagreement about the numerical value of
a. Brown (1964) and O'Leary (1966) concentrate on low-mass

(m < 0.5 m,) stars, obtaining respectively o = 0.61 and a = 0.74.

Warner (1961 a,b) verified Salpeter's (1955) value a = 1.35 for

0.25 mg <m < 10 mg; however, this estimate was based on an

"evolution corrected" mass spectrum over most of the range of m,
and we have already discussed some of the difficultles in
applying this correction (3). Using a somewhat different evolu-
tion correction, Limber (1960) obtains a spectrum of inverse
power law type with o = 1.55 for 1.5 m < m < ho m,. Reddish

(1966) concludes that o 1.5 (¥0.3) for 0.1 my < m < 100 mg,

and o = 1.33 over most of this range; these counts include field
stars locally and in the small Magellenic cloud, as well as the
galactic cluster h-Persei, Pleiades, Hyades, and Praesepe
(Reddish, 1962). However, the mass spectrum is definitely some-
what flatter for m < 0.5 My than the o = 1.33 inverse power law.

If Wanner's (1964) luminosity function for the solar neighbor-
hood is correct, i.e., w(MV,T) is fairly constant for 6 < My < 16,

then o > 0 for small m. In summary: The mass spectrum of small

stars, for which no evolutionary correction is needed, is too
poorly determined to furnish reliable information about the ini-
tial protostellar mass spectrum.
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The mass spectrum of very small and very massive
stars falls off much faster than the above-mentioned power
laws. Kiang (1966 a) has fitted the upper end of the '"cor-
rected" stellar mass spectrum by a fractional exponential
law with characteristic exponent n,

n
g(m,t) = (constant) n° M

where n = 1/5 for Salpeter's (1955) spectrum. These empirical
results and the theoretical arguments at the end of this paper
suggest that we consider the family of initial mass spectra

n
q(m,t) = (constant) m %"l gem (6)

which exhibits both inverse power law and fractional exponen-
tial law behavior, according to the values of the constants, o,
¢ and n.

2.0 MASS SPECTRUM OF INTERSTELLAR CLOUDS (REVIEW)

Scheffler (1967) has attempted to estimate the index
a in an assumed inverse power law mass spectrum. The index o
is determined empirically in two ways:

(1) From the relation between visual absorption values
and cloud diameters, and the distribution of these
absorption values.

(2) From the frequency distribution of absorption values
and optical depths at 21 cm wavelength.

These are the only determinations of the cloud mass spectrum
known to the author. We will briefly review Scheffler's argu-
ments.

_ He first notes that, on the average, the dust spatial
density Pys £8S density p, diameter A and absorption 3 (in mag-

nitudes) of an interstellar cloud are related by

p v AF (7
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The mass m(3) of a cloud with absorption 3 is

m(a) ~ pA3 nopt : (8)

with
g = (38 + e)/B(1 + &) (9)
The probability density of absorption (i.e., attenuation of

light) along a line of sight, say g(3), is related to the true
(spatial number) density function of clouds h(3) by

2

g(3) ~ 82(3)n(s) ~ a3t ¥ En(a) (10)
Scheffler observes, for large 3,

— -8

g(3) ~ 3 (11)
Thus the mass spectrum g(m) is

g(m) ~ h(3)da/dm ~ m %"t (12)
for large m, where

§ - 1 2
= + 1

The parameters 6, e, & are not well determined numerically.
We are likely to have, however,

B > 1 (dust density proportional to or increasing
slightly with increased gas density)
e £ 0 (larger clouds may have slightly higher gas
density due to self-compression)
£ 2 3 (from the preceding) (14)

§ > 1 (8 ~ 3) (observed)

§ + 1

a = 3 > 2/3 (o'~ 4/3) (from the preceding)
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Scheffler attempts to estimate o from estimated actual
sizes of absorbing clouds, but the physical uncertainties leave
a very poorly determined--2/3 < a < 4/3 for m < 5000 Mg and

a = 1/2 for m > 5000 Mg -

The distribution of the optical depth 1 for 21 cm
radiation leads to a more consistent estimate. Assuming that
optical depth t and cloud diameter A are related by

w% - Al + e/8 (15)
i
j; then the mass m(t) of a cloud with optical depth t is
4 ey E¥ | 6
;3 where

£ = (38 + e)/(B + €) (17)

The observed line of sight probability density of 1, g¥(t), is
assumed to be a power law for large T,

g#(7) n 707 (18)

Proceeding as above, we derive

- | _ e -1 2
E £ A { SR YY) (1%)

Scheffler obtains the empirical value ¥ = 2, thus o = 1, using
Clarks' (1965) data. With the same data the author obtains (Fig. 1)
- ¢*¥ n 3.0 for > 0.75, thus a ~» 4/3. The power law assumed for
g¥*(t) cannot, of course, be verified with such a small number

of observations.

.

To summarize, independent lines of investigation
tenuously support the hypothesis that the mass spectrum of in-
terstellar clouds is roughly an inverse power law with index
a > 1 (o = U4/3),.

3.0 FILIPPOV'S MODEL OF INDEPENDENT SPLITTING (REVIEW)

Suppose that at time t = 0 there is a single particle
of positive mass M, - This particle breaks up into a finite or

=
!
.

-
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countably infinite number of smaller particles whose masses
are positive numbers My, My, m3,... . The splitting con-

serves mass:
o o]
., = I
i=1 | |

Each particle existing at time t can split in the interval of
time (t,t + At) (independent of its past and of the fate of
other particles) with probability p(m)at + o(at) where m is
the mass of the particle and the function p(m) depends only on
m and 1s bounded 1n any positive interval Dl < m < D2, Dl > 0,
D2 < =», The number and masses of the particles arising from
one splitting of m, are random variables. The fraction of

mass in particles whose mass is less than m is

LY o= o(m ,m) (21)
1 ]
(@] mi<m

Thus m @(mo,m) is the"mass of all particles whose masses are
less than m, formed by a single splitting of the mass m,
Assume that the mathematical expectations

B {@(mo,m)} = F(mo,m)

| (22)
¢ (slogpnloln, 5] - oo
depend only on the indicated arguments. In general
Flm,, + 0) =0
B{mo, + o;ﬁ) =0 Blm, m, + o} =0 (23)

@(mo,mo) = 1
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These functions are sufficient to describe a very
general splitting process (Filippov, 1961). Some further
specific assumptions are needed to compute a limit distribu-
tion. They are:

(a) p(m) = m" , n >0
(24)
(b) F(mo, m) ‘
depends only on the value of m/mo, thus
F(mo, AmO] = £(1) (25)

for any 0 < A < 1 and m, Similarly,
B(mo, Al m > Azmo) = blxl, AE)

for any 0 < A A, < 1 and m

1’ "2

1
(c) [ F(A)AA/A < o
o]

(d) f£'(x) >0

for a set of A of positive measure.

Assumption (a) says that the probability per unit
time (rate) of splitting is a non-decreasing function of the
mass of the particle, i.e., large particles tend to break up
faster than small particles, which seems physically plausible.
That p(m) 1s a power function is also plausible, since we
would suspect that the splitting rate might be proportional to
the radius (n = 1/3) or radius squared (n = 2/3) or mass (n = 1)
of the cloud. Since the exact mechanism governing the fragmen-
tation of gas clouds is not known, it seems prudent to leave the
parameter n unspecified. Note that the unit of time is that
which a particle of unit mass will survive with probability 1l/e.

The similarity assumption (b) says that the breakup
mechanism operates in. the same manner whatever the size of the
initial particle. This is likely to be untrue for m, suffi-

ciently large or sufficiently small, but may well hold for a
very large range of values of m,
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Assumption (c¢) says, in effect, that not too much
mass is lost in small (zero-mass) particles. Assumption (4d)
says that a positive quantity of mass goes into fragments
with strictly different sizes. These assumptions are also
mathematically necessary.

Using the above assumptions, Filippov derives
integro-differential gquations for the first and second mo-
ments of the proportion of mass m(x,t) contained in particles
of mass < x at time t. In particular, for m, = 1

0 =
EE'E{m(X’t>} =

B0 4 [ pG(E, 0" ar) (26)

)

7 nox
—Jf N f(u,duE{m(u,t)}
X
Filippov establishes that (26) has an asymptotic
solution (t » «) of the form

E{m(x,t)} = G [(t + l)Xn] ’ (27)

In (26), letting u = (t + 1)x7, v = (t + 1)y, and £(1) = fl(x“),
he obtains

uG'(u) = j; fleg)vdG(v)

(28)
G(0) =0 , G(=) =1
or letting uG'(u) = cg(u) for c constant,
_ [T s qu
g(u) = j; fl{;)g(v)dv (29)

Thus

lim max|Eim(x,8)} - 6[ex")| = 0

£ + o 0 < X < ®
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Where G(u) may be found from (28) or (29). He also establishes
a stronger result, the convergence in probability of m(x,t) to
G.

An important special case in which G may be evaluated
explicitly is a power law for splitting.

k

£(1) = , k>0 (30)
In that case
u k
1 A~ 1 v
G(u) = k“[ v e 'dv (31)
Hk .
ni{ o
X n
E{m(x,t)} = te —ﬁ[ F(l + g , 2 {l - vk)t)dv (32)
o)

for x <m_ =1 and n > 0 where F(a,y,z) = M(a,y,z) is the con-
fluent hypergeometric function (Jahnke and Emde, 1945). Also

k
X

E{m(x,t)} = te—i[ S Il(2¢—t log v)dv (33)
V=t log v

for x <1, n = 0 where Il is a modified Bessel function of

order 1 (this case n = 0 was discussed by Kolmogorov (1940)).
We are really interested in the mass spectrum or expected
number density

1

]

a(x,t) =

where the number of particles of mass x to x + dx expected at
time t from a single initial particle of unit mass is q(x,t)dx.
In general the function g(x,t) cannot be normalized to a proba-
bility density. The total expected number of particles N(t) at
time t is
1
E{N(t)} =f q(x,t)dx + et (35)

6]
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and from (32) and (34) we obtain

E{N(t)}

i
3|

s — , T forn > 0, k > 1

= forn >0, k <1
For n = 0 and any f(A) we obtain

E{N(t)} = e(@ 1)t (36)

1,
where a =Jr f (A)drx/x may be infinite (this happens under

0
(30) for k < 1). Assuming (24) and (30) and t sufficiently
large for the asymptotic solutions (32, 33) to apply, we ob-
tain

a(x,t) = kt et x¥=2p(1 4+ %— , 2, {l—xn)t) for n > 0 (37)
a(x,t) = kt et xk-211(2/—kt log x/V-kt log X’ for n = 0 (38)

Independent of the asymptotlc properties, 1t can

be shown that as t-0,

k-2

a(x,t) ~ kt x (39)
which makes sense, since for small t only the initial parti-
cle has had time to break up, and the mass spectrum of

? -—
fragments from the initial particle is just £ (x)/x = kxk 2.
As z»» we have for the asymptotic solution
T -y Z
Fla,y,z) » HJ 2o7e (40)
T(y) -0 (41)

F(a,y,-2z) ~ T(y-a) Z

I,(z) ~ e?/V/3rz (42)
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thus
k/n n kK _
q(x,t) ~ LA 2 o7tx {1_Xn,n for n>0
i+ E) -)
174 R —— —\2
a(x,6) ~ —y(KE) - [/ K T % - A por neo
2x“V/1 (-log x) '
E{N(t)}n rggi/ig/n) for k>1 and n>0

4.0 FILIPPOV MODEL: NUMERICAL CALCULATIONS

The author has studied in greater detail the case

% =r+1 ’

(43)

()

(45)

(h6)

r a non-negative integer. We will derive simple explicit formu-
las for q(x,t) from (32). If k/n is not an integer, it may still
be possible to calculate q(x,t) by interpolating between values

derived for integer k/n. It is easily shown that

r(a) 1 dr (Za+r—leZ)
I(atr) a-1 azF

F(atr,a,z) = = Qr(z)eZ

where Qr(z) is a polynomial of degree r in z. Therefore

a(x,t) = nt x e for k=n

n
ont 1+{1-xn)§ }x2n‘2 e bX for k=2n
L

2

3nt 1+(l—xn)t+(1—xn]2}%z] x 302 e_txn for k=3n

o

and so on.

(47)

(48)

(49)

(50)
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We see for large t and x<<1 (the initial cloud is
extensively fragmented) the mass spectrum of fragments will
be of the form

k-2 _-tx

k/n
a(x,t) ~ —XE e (51)

e X
k

| r(1 + £)

which has aspects of both the inverse power law (Xk_g) and

n
fractional exponential law with exponent n(e_tx ).

The fractional exponential behavior will be no-
ticed only for sufficiently large x, say

n -1/n

tx" > 1/5 s x > (5t)

Even when n = o, the mass spectrum will be roughly the same
form, as is seen by rewriting (44) to read

(kt)
2V (-log x

R 2/ZKt 1og X
e e

57 (52)

a(x,t) ~

The exact asymptotic mass spectrum q is sketched in
Figures 2-10, for n = 1/3, 2/3, k = 1/3, 2/3, 1, 4/3, t =1, 2,
3, and for k¥ = n=1, t = 1, 2, 3. k < 1 corresponds to the
shattering of a cloud into a multitude of small pieces. k > 1
corresponds to the splitting of a cloud into one large piece
and a few very small ones, i.e., to the "shedding" of a few
small fragments.

It is important to notice that if q(x,t) behaves es-
sentially like an inverse power law, its index o must obey

a =1~k <1 (53)

since k > 0. This is a consequence of mass conservation at
each splitting. However, we have shown that for some real
distributions, o>1l. The author, therefore, extended Filippov's
model to cover these observations.
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5.0 EFFECT OF MIXING SPECTRA FROM CLOUDS OF DIFFERENT AGES OR
INITIAL SIZES

In the previous section we obtain asymptotic formulase
for the expected number density q(x,t) of cloud fragments of
mass X at time t from a single initial cloud of mass x = 1 at
time £ = 0. In practice the mass spectrum of field stars (in
the Solar neighborhood, for example) will have come from clouds
with different ages or, what amounts to the same thing, with

different initial masses m, - There is also the possibility of

density variations within a large initial cloud.

Mixing together protostars from clouds with different
ages t will yield an observed mass spectrum qT(x) which is a
mixture of spectra q(x,t), say

T
ap(x) =fo a(x,u) £_(uw)du (54)

where T is the present epoch and ft(u) is the probability densi-

ty function of the birthdays t of the initial clouds contributing
observable protostars. A simple calculation will illustrate qua-
litatively the effect of time averaging. Suppose t is distribu-
ted uniformly over the interval (O,TO), i.e.,

l/To for o < u < T, (55)

ft(u)

oftherwise

il
(@]

£ (u)
and further assume that TO is very large,
TO >> k/n . T »>> 1

This kind of hypothesis is assumed explicitly by Salpeter (1955).
Since To is large, we adopt the asymptotic formula (43) and write

k
k/n = -1 n
kt L2 (1_Xn)n o-bx (56)

q(x,t).= F(l N %)
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Therefore
k
= -~ 1 ,T n
qT(X) - ___j&_jz_ Xk—2 (l_xn)n Jr o tk/n e—tx 4t /T
r(l + H) o 0
K _ 1 (57)
N X—n—2 (1_xn’n e}

i.e., the mass spectrum is (asympfotically) an inverse power
law with index n + 1 (>1).

In the same way let us consider a mixture in m, . Let
the initial (t = 0) cloud mass be m s and suppose that m has a

probability density fm (m). Then the observed mass spectrum at
time t is ©

o]

B (m50) = [ am/u,e) 1, ()au/ (58)

O 0

where q(x,t) is the normalized spectrum derived as in the pre-
ceding section. Assuming that for large enough t the asympotic
formula (43) is exactly correct, we obtain

Qmo(m,t) = J‘i}i—;—z-)- tk/n mk~2£nm Ul—k [l
n (59)
- (mu)n]hls - e—t(m/u)nfmo(“)du

Suppose, for the sake of definiteness, that m, has an inverse

power law probability density

£ (u) = asuu_u_l for u > s > 0
© (60)

=0 for u < s

where o > 0 and s is "small". Then for m > s,
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ar(a+k—l}

_ n k/n _a_=—-oa-1 at+k-1 at2k-1

U (M8 = T[T S I T “’“) (61)
k _

assuming as well that « > 1 - k. Since, for large t, the con-
fluent hypergeometricjfunction F i1s approximately

I'(b) -a

Ir(b-a) t

F(a,b,-t) ~

we have, for very large t, and o % 1,

aP(a+k_l) l-a
q, (m,t) » ——-—q—%’———— t 0 g%t (62)

© n

We see that, in a certain limited sense, the inverse power law
type of spectrum reproduces itself under Filippov's independent
splitting mechanism. If g{(m,t) is both time-mixed by (55) and
initial-mass-mixed by (60), the initial-mass mixing effect (in-
dex a) will predominate.

We will not pursue this line of argument further. It
is clear that mixtures of protostar populations from different
initial clouds can lead to an inverse power law type of mass
spectrum with index > 1, which 1s strictly impossible for the
unmixed spectrum. Local field stars, which probably were formed
in many different initial clouds, may exhibit a mixed spectrum
of this kind.

6.0 SOME QOTHER MODELS

Previous theoretical models for g(m,t) are based on
"one-shot" once-and-forever splitting mechanisms, rather than on
repeated mechanisms. For example, one very simple model for the
fragmentation of a large initial volume of gas has been proposed
by Auluck and Kothari (1965) (see also Kushwaha and Kothari,
1960). The assumed physical process is that the volume of in-
terest is cut into parallelipipeds by three orthogonal systems
of parallel planes, the position of each plane along a perpendi-
cular axis being given by a Poisson (purely random) process.

The mass spectrum derived is approximately
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g(m) ~ (constant) (m/ﬁ)”2/3 {3{m/ﬁ)1/3 _l>,e—3{m/ﬁ)l/3

1/3 (63)
" (constant)‘m_l/3 e~

for m >> m = average mass of fragment. This is similar to (6)
with o = -2/3 and n = 1/3. It does not fit the observed spec-
trum very well. Further, the underlying physical model does
e not appear to be very plausible.

A much more plausible model has been suggested by
Kiang (1966 b). Let points (condensation centers) be distri-
buted Poissonwise (at random) in space, and suppose that each
center captures all the matter closer to itself than to any
other center. The region of interest will then be divided into
a set of irregular polyhedra known as Voronoi polyhedra. The
probability density of the volume (equivalently, the mass) of
these polyhedra is approximately of the form of a gamma density
" with exponent 6, or

Poew—

g(m) = (constant) m° e Cm (64)

the determination of this density being the result of a Monte
B Carlo calculation (Kiang, 1966b). However, it can be shown
| quite rigorously (Gilbert, 1962) that this random cell model
produces a number density which for large m is of the order of

. -cm . .
} e , Oor more precisely

j’ g(m')dm' ~ (constant) e” ™" (65)
m .

for some ¢ and for m sufficiently large. The present stellar
| number density (equivalently, mass spectrum) does not show an
exponential tail, which leads Kiang (1966a) to suggest that
only a fraction of the protostellar mass contracts into an ob-
n

servable star, the fraction being roughly proportional to m
for some n < 1.

Gilbert also discusses a plausible generalization
of the cell model, known as the Johnson-Mehl model. In the
Johnson-Mehl model condensation centers are inserted into the
o region at random times as well as in random positions, and
! cells grow outward from these centers at a uniform velocity until
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they encounter other cell walls. Gilbert (1962) establishes
that the tail of the mass spectrum will fall off even faster
than exponentially; more precisely,

” —cmu/3
jﬂ g(m')dm" ~ (constant) e (66)
m

for large m, and some constant c. Therefore this model also
cannot describe the observations.

Y
g{ Kruszewski (1961) has computed the mass spectrum
o with the assumption that linear perturbations in density have
. a "white noise" spectrum, and then invoking a parallelipiped
. approximation (as did Auluck and Kothari). Assuming that the
e minimum stellar mass is w = 0.07 mg, he obtains an initial

- stellar mass spectrum
2 -3
a(m) = (constant) [1og{m/u)] m for m>u (67)

which is actually in rather good agreement with Limber's (1960)

initial mass spectrum for 0.10 mg < m < 50 my - However, the

physical basis of Kruszewskil's results requires further elabora-
tion in particular; it would be interesting to see if the
‘3 parallelipiped approximation can be removed.

A coalescence and breakup model for interstellar
o clouds, originally proposed by Oort, has been analyzed by Field
! and Saslaw (1965). This model assumes that small interstellar
o clouds grow by collision and coalescence into larger and larger
clouds, until finally the cloud mass exceeds some critical value
§ and the large cloud breaks up into very small clouds, which be-
i gin repeating the coalescence process. The coalescence and
’ breakup mechanisms tend to produce a steady-state mass spectrum
. which, for constant coalescence kernel, is approximately of the
4 form

q(m) = (constant) n=3/2 g™ (68)

where B, a constant > 1, depends on the critical unstable cloud
mass and rate of breakup of large unstable clouds. This is also
" of the same form as (6), with o« = 1/2 and n =1, ¢ < o. For a

coalescence kernel proportional to m2/3 (a geometric collision
N factor, and physically plausible) g(m) will be roughly of the
 § form of an inverse power law with o = 2/3.
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Reddish (1962, 1966) has proposed a "one-shot"
splitting mechanism based on equipartition of gravitational
potential energy among cloud fragments. Since a variation
of his arguments will play an important role in our inter-
pretation of the data, we will next discuss this splitting
process.

7.0 THE REDDISH MODEL

Reddish (1962, 1966) makes the following argument:
Suppose that a cloud (of initial mass m, and radius ro) breaks

up into spherical fragments of uniform density. The gravita-
tional potential energy of a fragment of radius r is

Q(r) = (constant) m2/r = (constant) r? (69)

where m is the mass of the fragment. Let f(r) be the radius
spectrum resulting from this splitting: i.e., the expected
number of fragments whose radii are between r and r + dr is
f(r)dr. If gravitational potential energy is divided equally
among fragments of different radius, we have

Q(r)f(r) = constant

(70)
f(r) = (constant) r~

5(rl<r<ro)

Reddish assumes that this splitting occurs only once, and that
the process does not produce fragments smaller than radius
rl(mass s) in which case (reverting to the notation of Section 3)

the "one-shot" splitting spectrum is given by

1/3 ~1/3
(1/m)%ﬁ F(m,mo) = f'“3m/uﬂp) )(36ﬂp} n~2/3
(71)
= (conétant) n= 773 for s <m < m
thus
m -4/3
F m,m =jf (constant) m ~dm
© )
or
A ' _ 1/3
(1) =jf (constant) x—”/3 dx = (constant) Rmo/s)
s/mg (72)

-1/3]
- A

for 1 > X > s/mO
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To let s » o introduces a mathematical singularity in f(x);
the physical interpretation of this singularity is that most
of the mass of the initial particle is found in the smallest
(zero-mass) fragments. We therefore cannot use the hypothesis
(70) advanced by Reddish to determine a single-splitting
fragment size distribution f(1) which is of the form required
in Filippov's analysis, i.e., a power law (30) with s = 0.

A simple reformulation of Reddish's argument pro-
duces a theoretical single-splitting fragment mass distribu-
tion which is applicable to Filippov's repeated splitting
theory, and which has empirical justification. The gravita-
tional potential energy as a function of fragment mass m is

5/3 (73)

o(m) = (constant) m

Suppose now that gravitational potential energy is distributed
evenly among fragments of different mass. The mass spectrum
from a single splitting of a particle of mass m, is, as before,

(1/m) %ﬁ F(m,mo), thus the analogy of (70) - (72) with s = 0 is

Q(m) (l/m)%a F(m,mo) = constant
F(m,mo) = (m/mo)l/3 (74)-
(1) = A 1/3
in other words
k = 1/3

(75)
o =1 -k = 2/3

The prediction from (74) is, therefore, that the
initial mass spectrum of small stars from a single cloud,
which have not yet evolved off the main sequence, is an in-
verse power law with index 2/3. This is supported by Brown
(1964) and O'Leary (1966).

8.0 SOME INTERPRETATIONS OF THE STELLAR MASS SPECTRUM

If the splitting process leading to the "initial"
protostellar mass spectrum was very extended in time,
Filippov's treatment seems the most plausible and the most
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tractable. For an initial mass spectrum which is the result
of a single cloud fragmentation, the approach suggested by
Reddish seems most plausible. The author's application of
Reddish's method yields k = 1/3, that is, o = 2/3 for small
stars.

We interpret the index o = 4/3 (which may apply to
large field stars) in the following way. The observed mass
spectrum is in fact a mixture of spectra from clouds with
different ages and initial masses. It was shown in Section 2
that the distribution of cloud masses is roughly an inverse
power law with index 4/3, which would produce an initial-mass
mixed spectrum of protostellar masses of about the same shape
(62). On the other hand, a time-mixed spectrum could produce
an inverse power law with index 1 + n (see (57)) which in
this case would imply n = 1/3, i.e., the rate of splitting is
roughly proportional to the radius of the fragment. It is not
clear which of these interpretations is correct.

Probably the most useful tool in clearing up these
theoretical uncertainties would be an improved, unevolved
luminosity function or mass spectrum, determined either for
young clusters or for small (m < 0.5 m@) field stars.

o W Parons

2015-AHM=~kse A. H. Marcus
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Figure 1.

Figures 2-10.

CAPTIONS TO FIGURES

Number of interstellar clouds with optical depth
1 (in intervals of length 0.5), after Clark (1965)

Expected number density q(x,t) of fragments of
mass x ‘at time t from an initial particle of
unit mass.
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